留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于极值分析的钻井参数异常数据识别研究

Research on identification of abnormal drilling parameter data based on extreme value analysis

  • 摘要: 深层复杂地质条件下钻井参数高维、非平稳、强噪声特性导致的异常检测准确率低、时效性差,为此该文提出一种基于极值分析的钻井参数异常数据识别方法。通过建立广义帕累托分布模型对钻井参数进行极值分析,结合多参数关联判别策略,构建了一套完整的异常数据识别方法。实验结果表明,该方法在钻井参数异常检测中准确率达到94.7%,较3σ法(82.4%)、箱线图法(85.7%)、隔离森林(89.3%)和LSTM-AE(92.5%)分别提高12.3%、9.0%、5.4%和2.2%,且在卡钻、井漏、井涌等多种异常工况下表现出较强的鲁棒性。研究成果不仅丰富了钻井参数数据分析理论,也为油气田智能钻井提供了技术支持,对提高钻井安全性和效率具有重要实践意义。

     

    Abstract: High-dimensional, non-stationary, and strong noise characteristics of drilling parameters under deep and complex geological conditions result in low accuracy and poor timeliness in anomaly detection. To address this issue, this paper proposes a method for identifying abnormal drilling parameter data based on extreme value analysis. By establishing a generalized Pareto distribution model for extreme value analysis of drilling parameters and combining it with a multi-parameter correlation discrimination strategy, a complete set of abnormal data identification methods is constructed. The experimental results show that the accuracy of this method in drilling parameter anomaly detection reaches 94.7%, which is 12.3%, 9.0%, 5.4% and 2.2% higher than 3σ method (82.4%), box plot method (85.7%), isolation forest (89.3%) and LSTM-AE (92.5%) respectively. It also exhibits strong robustness under various abnormal working conditions such as stuck drilling, lost circulation, and well kicks. The research results not only enrich the theory of drilling parameter data analysis, but also provide technical support for intelligent drilling in oil and gas fields, which has important practical significance for improving drilling safety and efficiency.

     

/

返回文章
返回