留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
邴磊. 基于Attention-GRU算法早期溢流识别预警方法[J]. 海洋石油, 2025, 45(2): 76-82. DOI: 10.3969/j.issn.1008-2336.2025.02.076
引用本文: 邴磊. 基于Attention-GRU算法早期溢流识别预警方法[J]. 海洋石油, 2025, 45(2): 76-82. DOI: 10.3969/j.issn.1008-2336.2025.02.076
BING Lei. Early overflow identification based on Attention-GRU algorithm early warning method[J]. Offshore oil, 2025, 45(2): 76-82. DOI: 10.3969/j.issn.1008-2336.2025.02.076
Citation: BING Lei. Early overflow identification based on Attention-GRU algorithm early warning method[J]. Offshore oil, 2025, 45(2): 76-82. DOI: 10.3969/j.issn.1008-2336.2025.02.076

基于Attention-GRU算法早期溢流识别预警方法

Early overflow identification based on Attention-GRU algorithm early warning method

  • 摘要: 早期溢流检测预警是预防井喷事故发生的重要手段。目前的溢流识别方法大多采用单一监测手段,且对钻井数据的识别不够精确,而溢流识别的核心在于对异常数据的提取,这些数据与是否发生溢流并非是线性关系。为提升现场早期溢流预警效率,采用Attention-GRU算法构建溢流识别模型,修正出口流量和钻井数据,并以时间序列排列进行输入,输出为溢流判别结果,计算溢流概率,实现早期溢流识别预警。通过对比分析,优选出适合该模型的最优时间间隔,并与RNN(循环神经网络)、LSTM(长短期记忆网络)、GRU(门控循环单元)三种时间序列预测模型进行对比,验证了预警模型监测结果的准确性,具有较高的现场应用价值。

     

    Abstract: Early overflow detection and warning is an important means to prevent blowout accidents. Most of the current overflow identification methods use a single monitoring means, and the identification of drilling data is not accurate enough. The key of overflow identification is the extraction of abnormal data, which is not linear relationship with whether overflow occurs. In order to improve the efficiency of early onsite overflow warning, the Attention-GRU algorithm is used to build an overflow identification model to correct the outlet flow and drilling data. The input is arranged in time series. The output is the overflow discrimination result, and the overflow probability is calculated to achieve early overflow identification and early warning. Through comparative analysis, the optimal time interval suitable for the model is selected. And compared with three time series prediction models: RNN, LSTM and GRU, the accuracy of the monitoring results of the early warning model is verified, and it has high field application value.

     

/

返回文章
返回