留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
赵天沛. 基于集成学习算法的致密砂岩储层测井岩相识别[J]. 海洋石油, 2025, 45(2): 55-61. DOI: 10.3969/j.issn.1008-2336.2025.02.055
引用本文: 赵天沛. 基于集成学习算法的致密砂岩储层测井岩相识别[J]. 海洋石油, 2025, 45(2): 55-61. DOI: 10.3969/j.issn.1008-2336.2025.02.055
ZHAO Tianpei. Logging lithofacies identification of tight sandstone reservoir based on ensemble learning algorithm[J]. Offshore oil, 2025, 45(2): 55-61. DOI: 10.3969/j.issn.1008-2336.2025.02.055
Citation: ZHAO Tianpei. Logging lithofacies identification of tight sandstone reservoir based on ensemble learning algorithm[J]. Offshore oil, 2025, 45(2): 55-61. DOI: 10.3969/j.issn.1008-2336.2025.02.055

基于集成学习算法的致密砂岩储层测井岩相识别

Logging lithofacies identification of tight sandstone reservoir based on ensemble learning algorithm

  • 摘要: 致密砂岩储层岩相是储层识别和储层参数计算的重要依据。利用智能算法进行储层岩相智能识别可以有效提高识别精度,但单一智能算法易过拟合,稳定性差。该研究采用GBDT、LightGBM、XGBoost 以及CatBoost四类Boosting类集成学习算法,以西湖凹陷Z气田的测井数据为研究基础,通过决策树特征选择及人为剔除,筛选出对岩相敏感度较高的7个测井参数,如P16H、CNCF等。基于这些参数,构建了岩相智能识别模型,并利用遗传算法对模型的超参数进行优化,实现对Z气田12种岩相的分类识别。研究结果显示,通过遗传算法优化的LightGBM算法在岩相识别中的准确率达到了87.3%,这一性能优于支持向量机、决策树这类传统的机器学习方法。该研究提出的结合特征选择和遗传算法优化的四类Boosting算法,为基于测井资料的岩相识别提供了一种新的研究思路和方法。

     

    Abstract: Lithofacies of tight sandstone reservoir is an important basis for reservoir identification and reservoir parameter calculation. Intelligent algorithm can effectively improve the identification accuracy of reservoir lithofacies, but a single intelligent algorithm is easy to overfit and has poor stability. In this study, four Boosting ensemble learning algorithms, GBDT, LightGBM, XGBoost and CatBoost, are used. Based on the logging data of Z gas field in Xihu Sag, seven logging parameters with high sensitivity to lithofacies, including P16H and CNCF, are screened by decision tree feature selection and artificial deletion. Based on these parameters, a lithofacies intelligent recognition model is constructed, and the genetic algorithm is used to optimize the hyperparameters of the model, so as to realize the classification and recognition of 12 lithofacies types in Z gas field. The results show that the accuracy of LightGBM algorithm optimized by genetic algorithm reaches 87.3% in lithofacies recognition task, which is better than traditional machine learning methods such as Decision Tree and Support Vector Machine. The four Boosting algorithms proposed in this study, which combine feature selection and genetic algorithm optimization, provide a new research idea and method for lithofacies recognition based on logging data.

     

/

返回文章
返回